تاثیر پذیرش هوش مصنوعی بر پایداری اجتماعی (مورد‌ مطالعه: شرکت‌های دانش‌بنیان استان اصفهان)

نوع مقاله : مقالات پژوهشی آمیخته

نویسندگان

گروه مدیریت، دانشکده اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز، ایران

10.22059/jed.2024.381974.654410

چکیده

هدف: پایداری اجتماعی فرآیندی برای ایجاد و توسعه مکان‌های پایدار است که با درک نیاز زندگی و کار افراد، رفاه آنها را ارتقا می‌دهد. پایداری اجتماعی طراحی قلمرو فیزیکی را با طراحی دنیای اجتماعی ترکیب می‌کند و زیرساخت‌هایی برای حمایت از زندگی اجتماعی و فرهنگی، سیستم‌هایی برای مشارکت شهروندان و فضایی برای تعامل افراد ایجاد می‌کند. امروزه مشهود است هوش مصنوعی می تواند به عنوان ابزاری برای تحلیل اقدامات زیست محیطی مورد استفاده قرار گیرد. هوش مصنوعی دارای پتانسیل بالایی برای ارزیابی، پیش‌بینی و کاهش اثرات تغییرات محیطی است که مجموعه‌های داده بزرگ و پیچیده را در مورد تأثیر آب و هوا و محیط اجتماعی جمع‌آوری، تفسیر و تکمیل می‌کند، که راه‌کارهای بهتری برای تصمیم‌گیری آگاهانه ارائه می‌دهد. سیستم‌های هوش مصنوعی سیستم‌های پیچیده اجتماعی-فنی-اکولوژیکی هستند که با چالش‌های اجتماعی، زیست محیطی و اقتصادی متعددی همراه هستند. درحال حاضر این موضوع مطرح می‌شود که آیا سیستم‌های هوش مصنوعی مانع یا حامی یک جامعه اجتماعی و حفظ تعادل زیست‌محیطی می‌شوند. با توجه به تأثیر گسترده فناوری هوش مصنوعی بر بهبود کارایی، افزایش نوآوری، و ارتقاء کیفیت تصمیم‌گیری در شرکت‌ها، این فناوری می‌تواند نقشی مهم در ارتقاء پایداری اجتماعی ایفا کند. هدف از پژوهش حاضر، ارزیابی تاثیر پذیرش این فناوری بر پایداری اجتماعی در شرکت‌های دانش‌بنیان استان اصفهان است.

روش: این تحقیق از نظر هدف، توسعه‌ای-کاربردی و از نظر رویکرد، کیفی-کمی است. به‌طور کلی، این مطالعه به روش آمیخته اکتشافی و در افق زمانی مقطعی انجام شده است. در بخش کیفی، داده‌ها از طریق مطالعات کتابخانه‌ای به روش مرور سیستماتیک و تحلیل محتوای 10 مؤلفه شامل انتظار تلاش، انتظار عملکرد، تأثیر اجتماعی، شرایط تسهیل‌کننده، اعتماد، حریم شخصی و امنیت، شرایط کار، محیط کار، ایمنی کار، و توسعه مهارت جمع‌آوری شدند. در قسمت بعد با توجه به حجم نمونه برای جامعه در جدول مورگان، 74 پرسشنامه محقق‎ساخته با مشارکت مدیران شرکت‎های دانش‌بنیان فعال در حوزه‌ی فناوری اطلاعات و ارتباطات استان اصفهان، تکمیل و گرد‌آوری شد. مدل معادلات ساختاری، ‌برای بررسی روابط علت و معلولی به کار می رود. مدل معادلات ساختاری تحلیلی بر پایه چند متغیر از خانواده رگرسیون چند متغیری است. این تکنیک این امکان را فراهم می کند که مجموعه ای از معادلات رگرسیون رابه طور همزمان مورد آزمون قرار داد. در ادامه داد‌ه‌ها با اجرای روش مدل‌سازی ساختاری معادله‌ای، از طریق نرم‌افزار اسمارت پی ال اس مورد تجزیه‌وتحلیل قرار گرفت و شاخص‌های تأثیرگذار در پذیرش هوش مصنوعی بر پایداری اجتماعی به چهار سطح دسته‌بندی شدند و نمودار قدرت نفوذ-وابستگی برای آن‌ها ترسیم گردید.

یافته‎ها: نتایج نشان داد که مؤلفه «انتظار عملکرد» تأثیرگذارترین شاخص در بین عوامل مؤثر بر پذیرش هوش مصنوعی و پایداری اجتماعی است که تأثیر بسیار زیادی بر سایر مؤلفه‎ها دارد و باید به آن توجه ویژه‌ای شود. و نیز تاثیرپذیرترین عامل‌ها با قدرت پیش‌برندگی کم، «محیط کار»، «تاثیر اجتماعی»، «انتظار تلاش» و «شرایط تسهیل‌کننده» می‌باشد. در نهایت افزایش استفاده از سیستم های هوش مصنوعی با پیامدهای اجتماعی، زیست محیطی و اقتصادی چند وجهی همراه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Artificial Intelligence Adoption on Social Sustainability (Case Study: Isfahan Province Knowledge-Based Companies)

نویسندگان [English]

  • Tinasadat Mahmoudi
  • Mohammad Hossein Ronaghi
  • Alireza Amini
Department of Management, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
چکیده [English]

Objective: Social sustainability is a process for creating sustainable successful places that promote wellbeing, by understanding what people need from the places they live and work. Social sustainability combines design of the physical realm with design of the social world – infrastructure to support social and cultural life, social amenities, systems for citizen engagement, and space for people and places to evolve. That Artificial Intelligence (AI) can be used as a tool for environmental and climate action is today evident. AI has a great potential to assess, predict, and mitigate the effects of climate change as it gathers, interprets, and completes large and complex datasets on emissions and climate impact, which provides better solutions for informed decision-making. Artificial intelligence systems are complex socio-technical–ecological systems that are associated with multiple social, environmental, and economic challenges. Current discussions raise the question of whether AI systems impede or support a social and ecologically just society. Given the widespread impact of artificial intelligence technology in improving efficiency, increasing innovation, and enhancing decision-making quality in companies, this technology can play a significant role in promoting social sustainability. Therefore, the aim of this research is to evaluate the impact of adopting this technology on social sustainability in knowledge-based companies in Isfahan Province.

Method: This research is developmental-applied in terms of its purpose and qualitative-quantitative in terms of its study approach. In terms of its nature, it is a mixed exploratory study with a cross-sectional time horizon. To collect data in the qualitative section, a systematic literature review was used, and through content analysis, 10 components (effort expectancy, performance expectancy, social influence, facilitating conditions, trust, privacy and security, work condition, work environment, work safety, and skill development) related to the factors influencing the adoption of artificial intelligence on social sustainability emerged. In the next part, considering the sample size for the population according to Morgan's table, 74 researcher-made questionnaires were completed and collected with the participation of managers of knowledge-based companies in Isfahan Province who are active in the field of information and communication technology. Then, in order to implement the structural equation modeling method, the data was analyzed using the Smart PLS software, and the influential indicators in the adoption of artificial intelligence on social sustainability were classified at four levels, and a power-dependency diagram was drawn for them.

Conclusion: The research findings show that the performance expectancy component is the most effective and influential indicator among the factors influencing the adoption of artificial intelligence on social sustainability, which has a significant impact on other components and therefore should be given more attention. Also, the most affected factors with low driving power are the work environment, social influence, effort expectancy, and facilitating conditions. Finally, the increased use of Artificial intelligence systems (AI systems) is associated with multifaceted social, environmental, and economic consequences.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Social sustainability
  • Sustainable development
  • Performance expectancy
  • Equation structural modeling
امینی، علیرضا.، فتاحی، حمیدرضا.، و دولتشاه، پیمان. (1398). استراتژی‌های نوآوری، موفقیت کارآفرینانه و نقش میانجی ظرفیت جذب دانش. پژوهش‌های مدیریت منابع سازمانی، 9 (4)، 1-21.
بسطامی، رجب، منظری ‌توکلی، حمداله و سلاجقه، سنجر. (1396). بررسی فناوری اطلاعات و ارتباطات و رابطه آن با جلوه‌های بهره‌وری سازمانی مبتنی‎بر برویکرد اجتماعی توسعه پایدار. مدیریت شهری و روستایی، 47 (18)، 207-224.‎
حشمدار، اکرم و کردی، مراد. (1401). بررسی اثربخشی سیستم‌های هوش‎مصنوعی در کارکردهای منابع انسانی. پژوهش‌های معاصر در علوم مدیریت و حسابداری، 12 (4)، 1-6.‎
خیاطیان، محمد صادق.، الیاسی، مهدی.، و طباطباییان، سید حبیب اله. (1395). الگوی پایداری شرکت‌های دانش‌بنیان در ایران. سیاست علم و فناوری، 9 (2)، 49-62.‎
روشن، سید علیقلی.، یعقوبی، نورمحمد.، و مومنی، امیررضا. (1400). کاربست هوش‎مصنوعی در بخش دولتی (مطالعه ای فرا ترکیب). فصلنامه انجمن علوم مدیریت ایران، 16 (61)، 117-145.
صفری، احرام، و انصاری، علی اصغر. (1401). شناسایی و رتبه‌بندی عوامل مؤثر بر پذیرش هوش‎مصنوعی در بخش دولتی و خصوصی. مطالعات مدیریت کسب‌وکار هوشمند، 41 (11)، 222-254.‎ (DOI): 10.22054/IMS.2022.66402.2131
محمدیان، محمود و رونقی، محمدحسین (1390) استراتژی‌ها و تکنیک‌های ارتقای برند: 50 روش کاربردی در برندینگ، تهران، نشر مهربان.
 
Acemoglu, D., & Restrepo, P. (2018). Artificial intelligence, automation, and work. In The economics of artificial intelligence: An agenda (pp. 197-236). University of Chicago Press.‏ Acemoglu, Daron and Restrepo, Pascual, Artificial Intelligence, Automation and Work (January 2018). NBER Working Paper No. w24196, Available at SSRN: https://ssrn.com/abstract=3101994
Agarwal, R. (2020). Digital transformation: A path to economic and societal value. Revista CEA, 6 (12), 9-12. DOI: 10.22430/24223182.1700
Agarwal, V., Mathiyazhagan, K., Malhotra, S., & Saikouk, T. (2022). Analysis of challenges in sustainable human resource management due to disruptions by Industry 4.0: an emerging economy perspective. International Journal of Manpower43 (2), 513-541.‏ DOI:10.1108/IJM-03-2021-0192
Ahmadi, H. B., Kusi-Sarpong, S., & Rezaei, J. (2017). Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling126 (8), 99-106.‏ DOI:10.1016/j.resconrec.2017.07.020
Alam, M. S., Dhar, S. S., & Munira, K. S. (2020). HR Professionals’ intention to adopt and use of artificial intelligence in recruiting talents. Business Perspective Review2 (2), 15-30.‏ DOI:10.38157/business-perspective-review.v2i2.122
Alnamrouti, A., Rjoub, H., & Ozgit, H. (2022). Do strategic human resources and artificial intelligence help to make organisations more sustainable? evidence from non-governmental organisations. Sustainability, 14 (12), 7327. DOI:10.3390/su14127327
Alsheibani, S., Cheung, Y., & Messom, C. (2018). Artificial Intelligence Adoption: AI-readiness at Firm-Level. PACIS4, 231-245. https://aisel.aisnet.org/pacis2018/37/
Amini, A., & Alimohammadlou, M. (2021). Toward equation structural modeling an integration of interpretive structural modeling and structural equation modeling. Journal of Management Analytics8 (4), 693-714.‏ DOI:10.1080/23270012.2021.1881927
Amini A., Fatahi, H. & Dolatshah, P. (2020). Innovation strategies, entrepreneurial success and the role of absorption knowledge capacity, Researches of Management Organizational Resources, 9 (4), 1-21. (In Persian)
Ajmal, M. M., Khan, M., Hussain, M., & Helo, P. (2018). Conceptualizing and incorporating social sustainability in the business world. International Journal of Sustainable Development & World Ecology, 25 (4), 327-339. DOI:10.1080/13504509.2017.1408714
Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, and product innovation. Journal of Financial Economics151, 103745.‏ DOI:10.1016/j.jfineco.2023.103745
Babkin, A. V., Lipatnikov, V. S., & Muraveva, S. V. (2015). Assessing the impact of innovation strategies and R&D costs on the performance of IT companies. Procedia-Social and Behavioral Sciences207, 749-758. DOI:10.1016/j.sbspro.2015.10.153
Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change163 (5), 120420.‏ DOI:10.1016/j.techfore.2020.120420
Banihashemi, T. A., Fei, J., & Chen, P. S. L. (2019). Exploring the relationship between reverse logistics and sustainability performance: A literature review. Modern Supply Chain Research and Applications, 1 (1), 2-27. DOI:10.1108/MSCRA-03-2019-0009
Baskentli, S., Sen, S., Du, S., & Bhattacharya, C. B. (2019). Consumer reactions to corporate social responsibility: The role of CSR domains. Journal of Business Research95 (1), 502-513.‏ DOI:10.1016/j.jbusres.2018.07.046
Bastami, R., Manzari, H. & Salajeghe S. (2017). Review of ICT and Its Relation to Organizational Productivity Effects Based on Sustainable Development Social Approach, Urban Management, 16 (47), 201-218. (In Persian)
Bergstein, B. (2019). From intelligent systems to intelligent organizations. Research-Technology Management62 (3), 31-37. DOI:10.1080/08956308.2019.1587300
Boudreau, J. (2016). Work in the future will fall into these 4 categories. Harvard Business Review.
Brynjolfsson, E., & McAffee, A. (2017). What it can–and cannot–do for your organization. Harvard Business Review.
Buser, M., & Koch, C. (2014). Is this none of the contractor’s business? Social sustainability challenges informed by literary accounts. Construction management and economics32 (7-8), 749-759.‏ DOI:10.1080/01446193.2014.927898
Byrne, B.M. (2010). Structural Equation Modeling with AMOS Basic Concepts, Applications, and Programming, New York: Taylor and Francis Group. DOI: 10.4324/9781315757421
Cao, G., Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2021). Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making. Technovation, 106 (5), 102312.‏ DOI:10.1016/j.technovation.2021.102312
Carroll, A. B., & Shabana, K. M. (2010). The business case for corporate social responsibility: A review of concepts, research and practice. International journal of management reviews12 (1), 85-105. DOI:10.1111/j.1468-2370.2009.00275.x
Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2021). Assessing organizational users’ intentions and behavior to AI integrated CRM systems: A meta-UTAUT approach. Information Systems Frontiers, 25 (4), 1299-1313. DOI:10.1007/s10796-021-10181-1
Chen, H. (2019). Success factors impacting artificial intelligence adoption: Perspective from the telecom industry in China. Doctoral dissertation, Old Dominion University. DOI: 10.25777/a8q8-gm13
Chen, Y., & Lin, Z. (2021). Business intelligence capabilities and firm performance: A study in China. International Journal of Information Management57 (3), 102232.‏ DOI:10.1016/j.ijinfomgt.2020.102232
Chi, O. H., Gursoy, D., & Chi, C. G. (2022). Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: moderating role of service value seeking. Journal of Travel Research61 (1), 170-185.‏ DOI:10.1177/0047287520971054
Dabbous, A., Aoun Barakat, K., & Merhej Sayegh, M. (2022). Enabling organizational use of artificial intelligence: an employee perspective. Journal of Asia Business Studies16 (2), 245-266.‏ DOI:10.1108/JABS-09-2020-0372
Dasoriya, R., Rajpopat, J., Jamar, R., & Maurya, M. (2018). The Uncertain Future of Artificial Intelligence. 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence). DOI:10.1109/CONFLUENCE.2018.8442945
Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. mit Press. DOI:10.7551/mitpress/11781.001.0001
Demartini, M., Evans, S., & Tonelli, F. (2019). Digitalization technologies for industrial sustainability. Procedia manufacturing, 33, 264-271. DOI:10.1016/j.promfg.2019.04.032
Digalwar, A. K., Dambhare, S., & Saraswat, S. (2020). Social sustainability assessment framework for indian manufacturing industry. Materials Today: Proceedings28 (2), 591-598. DOI:10.1016/j.matpr.2019.12.226
Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283-314. DOI:10.1016/j.jbusres.2020.08.019
Dubravská, M., Marchevská, M., Vašaničová, P., & Kotulič, R. (2020). Corporate social responsibility and environmental management linkage: An empirical analysis of the Slovak Republic. Sustainability12 (13), 5431. DOI:10.3390/su12135431
Dyllick, T., & Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business Strategy and the Environment, 11 (2), 130-141. DOI:10.1002/bse.323
Elkington, J. (1994). Towards the sustainable corporation: Win-win-win business strategies for sustainable development. California management review36 (2), 90-100. DOI:10.2307/41165746
Fan, W., Liu, J., Zhu, S., & Pardalos, P. M. (2020). Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS). Annals of Operations Research, 294 (1), 567-592.‏ DOI:10.1007/s10479-018-2818-y
Ferreira, J. J., Lopes, J. M., Gomes, S., & Rammal, H. G. (2023). Industry 4.0 implementation: Environmental and social sustainability in manufacturing multinational enterprises. Journal of Cleaner Production, 404, 136841.‏ DOI:10.1016/j.jclepro.2023.136841
Fornell, C. & Larcker, D. (1981) “Structural Equation Models with Unobservable Variables and Measurement Error.” Journal of Marketing Research, 18 (1), 39-50. DOI: 10.2307/3151312
Furht, B., Villanustre, F., Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N.,... & Muharemagc, E. (2016). Deep learning techniques in big data analytics. Big Data Technologies and Applications, 2 (1), 133-156. DOI:10.1007/978-3-319-44550-2_5
Ghorpade, A. A. G. (2020). Investigating roadblocks to artificial intelligence adoption in enterprises through a systems perspective.Doctoral dissertation, Massachusetts Institute of Technology.
Graham, S. A., Lee, E. E., Jeste, D. V., Van Patten, R., Twamley, E. W., Nebeker, C.,... & Depp, C. A. (2020). Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry research284, 112732. DOI: 10.1016/j.psychres.2019.112732
Grover, P., Kar, A. K., & Dwivedi, Y. K. (2022). Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions. Annals of Operations Research308 (1-2), 177-213. DOI:10.1007/s10479-020-03683-9
Gupta, M., & Hodges, N. (2012). Corporate social responsibility in the apparel industry: An exploration of Indian consumers’ perceptions and expectations. Journal of Fashion Marketing and Management: An International Journal16 (2), 216-233. DOI:10.1108/13612021211222833
Gupta, S., Wang, Y., & Czinkota, M. (2023). Reshoring: a road to Industry 4.0 transformation. British Journal of Management34 (3), 1081-1099.‏ DOI:10.1111/1467-8551.12731
Hasan, M. S., Ebrahim, Z., Mahmood, W. W., & Ab Rahman, M. N. (2017). Sustainable-ERP system: A preliminary study on sustainability indicators. Journal of Advanced Manufacturing Technology (JAMT)11 (1), 61-74.
Hashmdar, A. & Kordi M. (2021). Investigating effectiveness of artificial intelligence systems in human resource functions, Current researchs in management and accounting science, 4 (12), 1-6. (In Persian)
Hmoud, B. I., & Várallyai, L. (2020). Artificial intelligence in human resources information systems: Investigating its trust and adoption determinants. International Journal of Engineering and Management Sciences5 (1), 749-765.‏ DOI:10.21791/IJEMS.2020.1.65
Holmström, J. (2022). From AI to digital transformation: The AI readiness framework. Business Horizons, 65 (3), 329-339. DOI: 10.1016/j.bushor.2021.03.006
Holzmann, P., Schwarz, E. J., & Audretsch, D. B. (2020). Understanding the determinants of novel technology adoption among teachers: the case of 3D printing. The Journal of Technology Transfer45 (1), 259-275. DOI:10.1007/s10961-018-9693-1
Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of service research21 (2), 155-172. DOI:10.1177/1094670517752459
Jain, R., Garg, N., & Khera, S. N. (2022). Adoption of AI-Enabled Tools in Social Development Organizations in India: An Extension of UTAUT Model. Frontiers in Psychology13, 893691. DOI: 10.3389/fpsyg.2022.893691
Jameel, A. S., Harjan, S. A., & Ahmad, A. R. (2023). Behavioral Intentions to use Artificial Intelligence Among Managers in Small and Medium Enterprises. AIP Conference Proceedings, 2814 (1), 8. DOI:10.1063/5.0148676
Jones, S. A., Michelfelder, D., & Nair, I. (2015). Engineering managers and sustainable systems: the need for and challenges of using an ethical framework for transformative leadership. Journal of Cleaner Production1 (8), 1-7.‏ DOI:10.1016/j.jclepro.2015.02.009
Khakurel, J., Melkas, H., & Porras, J. (2018). Tapping into the wearable device revolution in the work environment: a systematic review. Information Technology & People, 31 (3), 791-818. DOI:10.1108/ITP-03-2017-0076
Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in human behavior70 (2), 460-474.‏ DOI:10.1016/j.chb.2017.01.001
Lee, C. M. J., Che-Ha, N., & Alwi, S. F. S. (2021). Service customer orientation and social sustainability: The case of small medium enterprises. Journal of Business Research122, 751-760.‏ DOI:10.1016/j.jbusres.2019.12.048
Lin, C. J., Efranto, R. Y., & Santoso, M. A. (2021). Identification of workplace social sustainability indicators related to employee ergonomics perception in Indonesian industry. Sustainability13 (19), 11069.‏ DOI:10.3390/su131911069
Lin, H., Chi, O. H., & Gursoy, D. (2020). Antecedents of customers’ acceptance of artificially intelligent robotic device use in hospitality services. Journal of Hospitality Marketing & Management29 (5), 530-549.‏ DOI:10.1080/19368623.2020.1685053
Lu, L., Cai, R., & Gursoy, D. (2019). Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management80 (1), 36-51.‏ DOI:10.1016/j.ijhm.2019.01.005
Lukin, E., Krajnović, A., & Bosna, J. (2022). Sustainability strategies and achieving SDGs: A comparative analysis of leading companies in the automotive industry. Sustainability14 (7), 1-15. DOI:10.3390/su14074000
Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2022). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43 (2), 334-354. DOI:10.1108/IJM-03-2021-0173
Mani, V., Gunasekaran, A., & Delgado, C. (2018). Supply chain social sustainability: Standard adoption practices in Portuguese manufacturing firms. International Journal of Production Economics198 (16), 149-164.‏ DOI:10.1016/j.ijpe.2018.01.032
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27 (4), 12-12. DOI: 10.1609/aimag.v27i4.1904
Mohammadian, M., & Ronaghi, M. H. (2010). Brand Promotion Strategies and Techniques: 50 Applied Branding Methods. Tehran: Mehraban Book Institute Publishing. (In Persian)
Moriuchi, E. (2021). An empirical study on anthropomorphism and engagement with disembodied AIs and consumers' re‐use behavior. Psychology & Marketing38 (1), 21-42. DOI:10.1002/mar.21407
Moodaley, W., & Telukdarie, A. (2023). Greenwashing, Sustainability Reporting, and Artificial Intelligence: A Systematic Literature Review. Sustainability, 15 (2), 1481-1500. DOI:10.3390/su15021481
Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management53, 102104. DOI:10.1016/j.ijinfomgt.2020.102104
Öberseder, M., Schlegelmilch, B. B., & Murphy, P. E. (2013). CSR practices and consumer perceptions. Journal of Business Research66 (10), 1839-1851.‏ DOI:10.1016/j.jbusres.2013.02.005
Pang, Q., Fang, M., Wang, L., Mi, K., & Su, M. (2023). Increasing couriers’ job satisfaction through social-sustainability practices: perceived fairness and psychological-safety perspectives. Behavioral Sciences13 (2), 125.‏ DOI:10.3390/bs13020125
Pfeffer, J. (2010). Building sustainable organizations: The human factor. Academy of management perspectives24 (1), 34-45.‏ DOI:10.2139/ssrn.1545977
Pullman, M. E., Maloni, M. J., & Carter, C. R. (2009). Food for thought: social versus environmental sustainability practices and performance outcomes. Journal of supply chain management45 (4), 38-54.‏ DOI:10.1111/j.1745-493X.2009.03175.x
Rahman, M. M., Lesch, M. F., Horrey, W. J., & Strawderman, L. (2017). Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accident Analysis & Prevention108 (2), 361-373. DOI:10.1016/j.aap.2017.09.011
Rahman, M. S., Bag, S., Gupta, S., & Sivarajah, U. (2023). Technology readiness of B2B firms and AI-based customer relationship management capability for enhancing social sustainability performance. Journal of Business Research, 156 (1), 113525. DOI:10.1016/j.jbusres.2022.113525
Rodgers, W. (2020). Artificial intelligence in a throughput model: Some major algorithms. CRC Press. DOI:10.1201/9780429266065
Rojas, A., & Tuomi, A. (2022). Reimagining the sustainable social development of AI for the service sector: the role of startups. Journal of Ethics in Entrepreneurship and Technology2 (3), 39-54.‏ DOI:10.1108/JEET-03-2022-0005
Ronaghi, M. H. (2021). Open-source software migration under sanctions conditions. International Journal of System Assurance Engineering and Management, 12 (4), 1132-1145. DOI:10.1007/s13198-021-01329-y
Ronaghi, M. H. (2023). A contextualized study of blockchain technology adoption as a digital currency platform under sanctions. Management Decision, 61 (5), 1352-1373. https://doi.org/10.1108/MD-03-2022-0392
Ronaghi, M. H. (2024). Toward a model for assessing smart hospital readiness within the Industry 4.0 paradigm. Journal of Science and Technology Policy Management, 15 (2), 353-373. DOI:10.1108/JSTPM-09-2021-0130
Ronaghi, M. H., & Mahmoudi, J. (2015). The relationship between corporate governance and IT governance in public organizations. Journal of information technology management, 7 (3), 615-634. DOI: 10.22059/jitm.2015.54329
Ronaghi, M. H., & Mosakhani, M. (2022). The effects of blockchain technology adoption on business ethics and social sustainability: evidence from the Middle East. Environment, Development and Sustainability24 (5), 6834-6859.‏ DOI:10.1007/s10668-021-01729-x
Ronaghi, M. H., Zeinodinzadeh, S., & Alambeladi, S. (2019). Identification and ranking the factors affecting the knowledge management implementation using Metasynthesis Method. Library and Information Sciences, 22 (3), 112-135. DOI: 10.30481/ijlis.2019.183033.1553
Ronaghi, M., Ronaghi, M. H., & Kohansal, M. (2020). Agricultural Governance. GlobeEdit. 978-620-0-60948-9. https://www.morebooks.shop/shop-ui/shop/product/978-620-0-60948-9
Rosário, A. T., & Dias, J. C. (2022). Sustainability and the Digital transition: A literature review. Sustainability, 14 (7), 1-15. DOI:10.3390/su14074072
Faghih, N., Bonyadi, E., Sarreshteari, L. (2020). Entrepreneurship Viability. In: Entrepreneurship Viability Index. Contributions to Management Science. Springer, Cham.
Safari, E. & Ansari, A. (2022). Identifying and Ranking the Factors Affecting the Acceptance of Artificial Intelligence in the Public and Private Sectors, Quarterly Journal of Bi Management Studies, 11 (41), 221-254. (In Persian) 10.22054/IMS.2022.66402.2131
Saravanan, K., Sreedevi, E., & Subhamathi, V. (2017). A review of Artificial Intelligence systems. International Journal of Advanced Research in Computer Science8 (9), 418-421. DOI:10.26483/ijarcs.v8i9.5095
Scoville, C., Chapman, M., Amironesei, R., & Boettiger, C. (2021). Algorithmic conservation in a changing climate. Current Opinion in Environmental Sustainability51, 30-35.‏ DOI:10.1016/j.cosust.2021.01.009
Sharif, A., Afshan, S., & Qureshi, M. A. (2019). Acceptance of learning management system in university students: an integrating framework of modified UTAUT2 and TTF theories. International Journal of Technology Enhanced Learning, 11 (2), 201-229.‏ DOI:10.1504/IJTEL.2018.10017608
Spanjol, J., Xiao, Y., & Welzenbach, L. (2018). Successive innovation in digital and physical products: Synthesis, conceptual framework, and research directions. Innovation and Strategy15, 31-62. DOI:10.1108/S1548-643520180000015004
Vedapradha, R., Hariharan, R., & Shivakami, R. (2019). Artificial intelligence: A technological prototype in recruitment. Journal of Service Science and Management12 (3), 382-390. DOI:10.4236/jssm.2019.123026
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27 (3), 425-478. DOI: 10.2307/30036540
‏Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 36 (1), 157-178.‏ DOI:10.2307/41410412
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications11 (1), 233-250. DOI:10.48550/arXiv.1905.00501
Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 33 (1), 177-195. DOI:10.2307/20650284
Wongras, P., & Tanantong, T. (2023). An extended UTAUT model for analyzing users’ Acceptance factors for artificial Intelligence adoption in human resource recruitment: A case study of Thailand. Education and Information Technologies, 3 (7), 13–27. DOI:10.20944/preprints202311.1612.v1
Yim, W. W., Yetisgen, M., Harris, W. P., & Kwan, S. W. (2016). Natural language processing in oncology: a review. JAMA oncology2 (6), 797-804. DOI: 10.1001/jamaoncol.2016.0213